885 research outputs found

    An Allosteric Mechanism for Switching between Parallel Tracks in Mammalian Sulfur Metabolism

    Get PDF
    Methionine (Met) is an essential amino acid that is needed for the synthesis of S-adenosylmethionine (AdoMet), the major biological methylating agent. Methionine used for AdoMet synthesis can be replenished via remethylation of homocysteine. Alternatively, homocysteine can be converted to cysteine via the transsulfuration pathway. Aberrations in methionine metabolism are associated with a number of complex diseases, including cancer, anemia, and neurodegenerative diseases. The concentration of methionine in blood and in organs is tightly regulated. Liver plays a key role in buffering blood methionine levels, and an interesting feature of its metabolism is that parallel tracks exist for the synthesis and utilization of AdoMet. To elucidate the molecular mechanism that controls metabolic fluxes in liver methionine metabolism, we have studied the dependencies of AdoMet concentration and methionine consumption rate on methionine concentration in native murine hepatocytes at physiologically relevant concentrations (40–400 µM). We find that both [AdoMet] and methionine consumption rates do not change gradually with an increase in [Met] but rise sharply (∼10-fold) in the narrow Met interval from 50 to 100 µM. Analysis of our experimental data using a mathematical model reveals that the sharp increase in [AdoMet] and the methionine consumption rate observed within the trigger zone are associated with metabolic switching from methionine conservation to disposal, regulated allosterically by switching between parallel pathways. This regulatory switch is triggered by [Met] and provides a mechanism for stabilization of methionine levels in blood over wide variations in dietary methionine intake

    Does Alendronate reduce the risk of fracture in men? A meta-analysis incorporating prior knowledge of anti-fracture efficacy in women

    Get PDF
    BACKGROUND: Alendronate has been found to reduce the risk of fractures in postmenopausal women as demonstrated in multiple randomized controlled trials enrolling thousands of women. Yet there is a paucity of such randomized controlled trials in osteoporotic men. Our objective was to systematically review the anti-fracture efficacy of alendronate in men with low bone mass or with a history of prevalent fracture(s) and incorporate prior knowledge of alendronate efficacy in women in the analysis. METHODS: We examined randomized controlled trials in men comparing the anti-fracture efficacy of alendronate to placebo or calcium or vitamin D, or any combination of these. Studies of men with secondary causes of osteoporosis other than hypogonadism were excluded. We searched the following electronic databases (without language restrictions) for potentially relevant citations: Medline, Medline in Process (1966-May 24/2004), and Embase (1996–2004). We also contacted the manufacturer of the drug in search of other relevant trials. Two reviewers independently identified two trials (including 375 men), which met all inclusion criteria. Data were abstracted by one reviewer and checked by another. Results of the male trials were pooled using Bayesian random effects models, incorporating prior information of anti-fracture efficacy from meta-analyses of women. RESULTS: The odds ratios of incident fractures in men (with 95% credibility intervals) with alendronate (10 mg daily) were: vertebral fractures, 0.44 (0.23, 0.83) and non-vertebral fractures, 0.60 (0.29, 1.44). CONCLUSION: In conclusion, alendronate decreases the risk of vertebral fractures in men at risk. There is currently insufficient evidence of a statistically significant reduction of non-vertebral fractures, but the paucity of trials in men limit the statistical power to detect such an effect

    One-carbon metabolism and epigenetic programming of mammalian development

    Get PDF
    One-carbon (1C) metabolism comprises a series of integrated metabolic pathways, including the linked methionine-folate cycles, that provide methyl groups for the synthesis of biomolecules and the epigenetic regulation of gene expression via chromatin methylation. Most of the research investigating the function of 1C metabolism pertains to studies undertaken in the rodent liver. Comparatively little is known about the function of 1C metabolism in reproductive and embryonic cells, particularly in domestic ruminant species. Periconceptional dietary deficiencies in 1C substrates and cofactors are known to lead to epigenetic alterations in DNA methylation in genes that regulate key developmental processes in the embryo. Such modifications can have negative implications on the subsequent development, metabolism and health of offspring. This thesis sought to improve current understanding of the regulation of 1C metabolism in the ruminant liver, ovary and preimplantation embryo through in vivo and in vitro nutritional supplementation experiments coupled with metabolomic, transcriptomic and epigenetic analyses. The first part of this thesis (Chapter 2) assessed the metabolic consequences of dietary methyl deficiency using novel mass spectrometry–based methods that were developed for the quantification of B vitamins, folates and 1C-related amines in sheep liver. This study provided the first comparison of the relative abundance of bioactive 1C metabolites in liver harvested from methyl deficient sheep relative to a control study population of abattoir derived sheep. Relevant reductions in dietary methyl availability led to significant alterations in hepatic 1C metabolite concentrations. Large natural variations in the hepatic concentrations of individual metabolites in both sheep study populations reflected the dietary and genetic variation in our chosen outbred model species. These metabolomics platforms will be useful for investigating 1C metabolism and linked biochemical pathways in order to facilitate future dietary and genetic studies of metabolic health and epigenetic regulation of gene expression. Based on the absence of methionine cycle enzyme transcripts (e.g. MAT1A and BHMT) in the bovine ovary and preimplantation embryo, the second part of this thesis (Chapter 3 and Chapter 4) addressed the hypothesis that ruminant reproductive and embryonic cells are highly sensitive to methyl group availability and, therefore, epigenetic programming during the periconceptional period. Transcript analyses confirmed MAT2A expression in the bovine liver, ovary and at each stage of preimplantation embryo development assessed to Day 8. Transcripts for BHMT isoforms (BHMT and BHMT2) were detected in the bovine ovary but were weak or absent in embryos, highlighting a key difference in methionine metabolism between hepatic and reproductive cells. Bovine embryos were produced in vitro using custom-made media containing 0 (nonphysiological), 10 (low physiological), 50 (high physiological), and 500 µmol/L (supraphysiological) added methionine (Chapter 3). Gross morphological assessments of embryo stage, grade, cell lineage allocation and primary sex ratio revealed that culture in non- and supraphysiological methionine concentrations was detrimental for embryo development, whilst culture in the high physiological concentration appeared to be best. Reduced representation bisulphite sequencing (RRBS) of inner cell mass (ICM) and trophectoderm (TE) cells immunodissected from Day 8 blastocysts demonstrated that culturing embryos in low physiological methionine led to global hypomethylation within both cell lineages. Bioinformatic analyses of differentially methylated genes included gene set enrichment analyses (GSEA). Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that were enriched within the ICM were associated with protein catabolism and autophagy, and significant terms and pathways enriched within the TE were associated with cellular transport. Of particular biological interest was the loss of methylation within regulatory region (DMR2) of the paternally imprinted gene, IGF2R, in the TE following culture in low physiological methionine. Transcript analysis found no significant effect of methionine concentration on the expression of IGF2R or the antisense transcript, AIRN, in the primary cell lineages of the Day 8 bovine preimplantation embryo. Hypomethylation of IGF2R DMR2 has been associated with aberrant IGF2R expression and large offspring syndrome (LOS) in cattle and sheep that were subjected to embryo manipulation during assisted reproductive technology (ART) procedures, such as somatic cell nuclear transfer (SCNT) or non-physiological in vitro embryo culture environments. Chapter 5 sought to evaluate the effect of somatic donor cell type on epigenetic reprogramming via DNA methylation in hepatocytes isolated from cloned sheep. RRBS facilitated the comparison of methylation reprogramming between Finn Dorset (D) clone hepatocytes and their mammary epithelial (OP5) donor cell line; and, Lleyn (L) clone hepatocytes and their Lleyn fetal fibroblast (LFF4) donor cell line. Methylation was most closely correlated between D and L clone hepatocytes than between clones and their respective donor cell lines. In general, hepatocytes were hypomethylated relative to their somatic donor cell nuclei. GSEA identified genes that encoded transcription factor proteins enriched within the ‘Sequence-specific DNA binding’ term (GO:0043565) as differentially methylated between clone hepatocytes and their donor cell lines. In addition, imprinted genes, including IGF2R, were differentially methylated in clone hepatocytes relative to somatic cell nuclei. In summary, this thesis promotes and supports the importance of an optimal methyl balance to support periconceptional development in mammals. The experiments detailed herein provide an insight into the metabolic consequences of dietary methyl deficiency (and excess) in outbred populations of domestic ruminants, with a specific focus on the liver, ovary and preimplantation embryo. The results demonstrate that tissue- and species-specific features of 1C metabolism render ruminant embryonic cells sensitive to methionine inputs within a physiological range. The observation that in vitro embryo culture and manipulation techniques, such as somatic cell nuclear transfer, can cause epigenetic alterations to DNA methylation during preimplantation development provides a basis for further study into the safety and efficacy of emerging assisted reproductive technologies

    Visualising mouse neuroanatomy and function by metal distribution using laser ablation-inductively coupled plasma-mass spectrometry imaging

    Get PDF
    © The Royal Society of Chemistry 2015. Metals have a number of important roles within the brain. We used laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to map the three-dimensional concentrations and distributions of transition metals, in particular iron (Fe), copper (Cu) and zinc (Zn) within the murine brain. LA-ICP-MS is one of the leading analytical tools for measuring metals in tissue samples. Here, we present a complete data reduction protocol for measuring metals in biological samples, including the application of a pyramidal voxel registration technique to reproducibly align tissue sections. We used gold (Au) nanoparticle and ytterbium (Yb)-tagged tyrosine hydroxylase antibodies to assess the co-localisation of Fe and dopamine throughout the entire mouse brain. We also examined the natural clustering of metal concentrations within the murine brain to elucidate areas of similar composition. This clustering technique uses a mathematical approach to identify multiple 'elemental clusters', avoiding user bias and showing that metal composition follows a hierarchical organisation of neuroanatomical structures. This work provides new insight into the distinct compartmentalisation of metals in the brain, and presents new avenues of exploration with regard to region-specific, metal-associated neurodegeneration observed in several chronic neurodegenerative diseases

    Direct targets of the transcription factors ABA-Insensitive(ABI)4 and ABI5 reveal synergistic action by ABI4 and several bZIP ABA response factors

    Get PDF
    The plant hormone abscisic acid (ABA) is a key regulator of seed development. In addition to promoting seed maturation, ABA inhibits seed germination and seedling growth. Many components involved in ABA response have been identified, including the transcription factors ABA insensitive (ABI)4 and ABI5. The genes encoding these factors are expressed predominantly in developing and mature seeds, and are positive regulators of ABA mediated inhibition of seed germination and growth. The direct effects of ABI4 and ABI5 in ABA response remain largely undefined. To address this question, plants over-expressing ABI4 or ABI5 were used to allow identification of direct transcriptional targets. Ectopically expressed ABI4 and ABI5 conferred ABA-dependent induction of slightly over 100 genes in 11 day old plants. In addition to effector genes involved in seed maturation and reserve storage, several signaling proteins and transcription factors were identified as targets of ABI4 and/or ABI5. Although only 12% of the ABA- and ABI-dependent transcriptional targets were induced by both ABI factors in 11 day old plants, 40% of those normally expressed in seeds had reduced transcript levels in both abi4 and abi5 mutants. Surprisingly, many of the ABI4 transcriptional targets do not contain the previously characterized ABI4 binding motifs, the CE1 or S box, in their promoters, but some of these interact with ABI4 in electrophoretic mobility shift assays, suggesting that sequence recognition by ABI4 may be more flexible than known canonical sequences. Yeast one-hybrid assays demonstrated synergistic action of ABI4 with ABI5 or related bZIP factors in regulating these promoters, and mutant analyses showed that ABI4 and these bZIPs share some functions in plants

    A Case Study of Crowdsourcing Imagery Coding in Natural Disasters

    No full text
    Crowdsourcing and open licensing allow more people to participate in research and humanitarian activities. Open data, such as geographic information shared through OpenStreetMap and image datasets from disasters, can be useful for disaster response and recovery work. This chapter shares a real-world case study of humanitarian-driven imagery analysis, using open-source crowdsourcing technology. Shared philosophies in open technologies and digital humanities, including remixing and the wisdom of the crowd, are reflected in this case study.This research was funded through the European Commission FP7-ICT project: Citizen Cyberlab: Technology Enhanced Creative Learning in the field of Citizen Cyberscience

    On the relationship between the reversed hazard rate and elasticity

    Get PDF
    Despite hazard and reversed hazard rates sharing a number of similar aspects, reversed hazard functions are far less frequently used. Understanding their meaning is not a simple task. The aim of this paper is to expand the usefulness of the reversed hazard function by relating it to other well-known concepts broadly used in economics: (linear or cumulative) rates of increase and elasticity. This will make it possible (i) to improve our understanding of the consequences of using a particular distribution and, in certain cases, (ii) to introduce our hypotheses and knowledge about the random process in a more meaningful and intuitive way, thus providing a means to achieving distributions that would otherwise be hardly imaginable or justifiable

    Prediction of peptide and protein propensity for amyloid formation

    Get PDF
    Understanding which peptides and proteins have the potential to undergo amyloid formation and what driving forces are responsible for amyloid-like fiber formation and stabilization remains limited. This is mainly because proteins that can undergo structural changes, which lead to amyloid formation, are quite diverse and share no obvious sequence or structural homology, despite the structural similarity found in the fibrils. To address these issues, a novel approach based on recursive feature selection and feed-forward neural networks was undertaken to identify key features highly correlated with the self-assembly problem. This approach allowed the identification of seven physicochemical and biochemical properties of the amino acids highly associated with the self-assembly of peptides and proteins into amyloid-like fibrils (normalized frequency of β-sheet, normalized frequency of β-sheet from LG, weights for β-sheet at the window position of 1, isoelectric point, atom-based hydrophobic moment, helix termination parameter at position j+1 and ΔGº values for peptides extrapolated in 0 M urea). Moreover, these features enabled the development of a new predictor (available at http://cran.r-project.org/web/packages/appnn/index.html) capable of accurately and reliably predicting the amyloidogenic propensity from the polypeptide sequence alone with a prediction accuracy of 84.9 % against an external validation dataset of sequences with experimental in vitro, evidence of amyloid formation

    Plasma folate levels are associated with the lipoprotein profile: a retrospective database analysis

    Get PDF
    BACKGROUND: Several studies demonstrated an association of homocysteine plasma levels and the plasma lipoprotein profile. This cross-sectional pilot study aimed at analyzing whether blood levels of the two important cofactors of homocysteine metabolism, folate and vitamin B12, coincide with the lipoprotein profile. METHODS: In a retrospective single center approach, we analyzed the laboratory database (2003-2006) of the University Hospital Bonn, Germany, including 1743 individuals, in whom vitamin B12, folate and at least one lipoprotein parameter had been determined by linear multilogistic regression. RESULTS: Higher folate serum levels were associated with lower serum levels of low density lipoprotein cholesterol (LDL-C; Beta = -0.164; p < 0.001), higher levels of high density lipoprotein cholesterol (HDL-C; Beta = 0.094; p = 0.021 for trend) and a lower LDL-C-C/HDL-C-ratio (Beta = -0.210; p < 0.001). Using ANOVA, we additionally compared the individuals of the highest with those of the lowest quartile of folate. Individuals of the highest folate quartile had higher levels of HDL-C (1.42 +/- 0.44 mmol/l vs. 1.26 +/- 0.47 mmol/l; p = 0.005), lower levels of LDL-C (3.21 +/- 1.04 mmol/l vs. 3.67 +/- 1.10 mmol/l; p = 0.001) and a lower LDL-C/HDL-C- ratio (2.47 +/- 1.18 vs. 3.77 +/- 5.29; p = 0.002). Vitamin B12 was not associated with the lipoprotein profile. CONCLUSION: In our study sample, high folate levels were associated with a favorable lipoprotein profile. A reconfirmation of these results in a different study population with a well defined status of health, diet and medication is warranted

    Strategies for incorporating patient-reported outcomes in the care of people with chronic kidney disease (PRO kidney): a protocol for a realist synthesis

    Get PDF
    Background: Patient-reported outcomes and experience measures (jointly referred to here as PROs) are internationally recognized as a means for patients to provide information about their quality of life, symptoms, and experiences with care. Although increasingly recognized as key to improving the quality of healthcare at individual (e.g., patients, caregivers, and providers) and aggregate (e.g., government, policy/system-wide decision-making) levels, there are important knowledge gaps in our understanding of how PROs are, and can be, used across different settings, particularly in nephrology to enhance person-centered care. This knowledge is needed for developing strategies to guide optimal use of PROs in nephrology care. Currently, no strategies exist. The purpose of this review is to address this knowledge gap by answering the following realist question: How can PROs be used to enhance person centered nephrology care, both at individual and aggregate levels? Methodology: Realist synthesis is an explanatory approach to data synthesis that aims to explain how context and mechanisms influence the outcome of an intervention. An initial program theory will be developed through the systematic search of the published literature in bibliographic databases (Ovid MEDLINE, Ovid Embase, EBSCOhost CINAHL, Web of Science, and Scopus) on existing theories explaining how PROs are used in healthcare settings. This initial program theory will then be tested and refined through the process of realist synthesis, using context-mechanism-outcome configurations. A kidney-specific program theory will then be created to address the utilization of PROs in nephrology across individual and aggregate levels to augment person-centered care. Searching will be iterative and refined as data is extracted and analyzed using a pilot testedcontext + mechanism = outcome heuristic. Throughout, we will consult methodological experts, research team practitioners, and the Patient Advisory Committee to help refine the theories. Last, we will develop and disseminate knowledge translation products widely to knowledge user groups. Discussion: The utilization of PROs remains a challenge in nephrology. The findings from this synthesis will provide a framework to guide both policy makers and practitioners on how to enhance person-centered care through successful utilization of PROs across individual and aggregate levels in nephrology
    corecore